
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 31 October 2022
Markus Püschel, David Steurer
François Hublet, Goran Zuzic, Tommaso d’Orsi, Jingqiu Ding

Algorithms & Data Structures Exercise sheet 6 HS 22

�e solutions for this sheet are submi�ed at the beginning of the exercise class on 07 November 2022.

Exercises that are marked by ∗ are “challenge exercises”. �ey do not count towards bonus points.

You can use results from previous parts without solving those parts.

Exercise 6.1 Longest ascending subsequence.

�e longest ascending subsequence problem is concerned with �nding a longest subsequence of a given
array A of length n such that the subsequence is sorted in ascending order. �e subsequence does not
have to be contiguous and it may not be unique. For example if A = [1, 5, 4, 2, 8], a longest ascending
subsequence is 1, 5, 8. Other solutions are 1, 4, 8, and 1, 2, 8.

Given is the array:

[19, 3, 7, 1, 4, 15, 18, 16, 14, 6, 5, 10, 12, 19, 13, 17, 20, 8, 14, 11]

Use the dynamic programming algorithm from section 3.2. of the script to �nd the length of a longest
ascending subsequence and the subsequence itself. Provide the intermediate steps, i.e., DP-table up-
dates, of your computation.

Solution:

�e solution is given by a one-dimensional DP table that we update in each round. A�er round i, the
entry DP [j] contains the smallest possible endvalue for an ascending sequence of length j that only
uses the �rst i entries of the array. In each round, we need to update exactly one entry. If there is
no ascending sequence of length j, we mark it by “-” . In order to visualise the algorithm, we display
the table a�er each round. Note that the algorithm does not create a new array in each round, it just
updates the single value that changes



length 1 2 3 4 5 6 7 8 9

round 1 19 - - - - - - - -
round 2 3 - - - - - - - -
round 3 3 7 - - - - - - -
round 4 1 7 - - - - - - -
round 5 1 4 - - - - - - -
round 6 1 4 15 - - - - - -
round 7 1 4 15 18 - - - - -
round 8 1 4 15 16 - - - - -
round 9 1 4 14 16 - - - - -
round 10 1 4 6 16 - - - - -
round 11 1 4 5 16 - - - - -
round 12 1 4 5 10 - - - - -
round 13 1 4 5 10 12 - - - -
round 14 1 4 5 10 12 19 - - -
round 15 1 4 5 10 12 13 - - -
round 16 1 4 5 10 12 13 17 - -
round 17 1 4 5 10 12 13 17 20 -
round 18 1 4 5 8 12 13 17 20 -
round 19 1 4 5 8 12 13 14 20 -
round 20 1 4 5 8 11 13 14 20 -

�e longest subsequence has length 8, since this is the largest length for which there is an entry in the
table a�er the �nal round. To obtain the subsequence itself, we work backwards: �e last entry is 20. To
get the second-to-last value, we check out the le� neighbor of 20 in the round in which 20 was entered
(round 17), which is 17. �en we go the le� neighbor of 17 in the round in which it entered the table
(round 16), and obtain 13. Continuing in this fashion, we obtain the sequence 1, 4, 5, 10, 12, 13, 17, 20.

Exercise 6.2 Coin Conversion (1 point).

Suppose you live in a country where the transactions between people are carried out by exchanging
coins denominated in dollars. �e country uses coins with k di�erent values, where the smallest coin
has value of b1 = 1 dollar, while other coins have values of b2, b3, . . . , bk dollars. You received a bill
for n dollars and want to pay it exactly using the smallest number of coins. Assuming you have an
unlimited supply of each type of coin, de�ne OPT to be the minimum number of coins you need to
pay exactly n dollars. Your task is to calculate OPT. All values n, k, b1, . . . , bk are positive integers.

Example: n = 17, k = 3 and b = [1, 9, 6], then OPT = 4 because 17 can be obtained via 4 coins as
1 + 1 + 9 + 6. No way to obtain 17 with three or less coins exists. (A previous version had a typo
“k = 4” that was corrected to “k = 3”.)

(a) Consider the pseudocode of the following algorithm that “tries” to compute OPT.

2



Algorithm 1
1: Input: integers n, k and an array b = [1 = b1, b2, b3, . . . , bk].
2:
3: counter ← 0
4: while n > 0 do
5: Let b[i] be the value of the largest coin b[i] such that b[i] ≤ n.
6: n← n− b[i].
7: counter ← counter + 1

8: Print(“min. number of required coins = “, counter)

Algorithm 1 does not always produce the correct output. Show an example where the above algo-
rithms fails, i.e., when the output does not match OPT. Specify what are the values of n, k, b, what
is OPT and what does Algorithm 1 report.

Solution:

Set n = 12, k = 3, b = [1, 9, 6] (this is the same example as above except n = 12). Algorithm 1
returns 4 as it �nds the sequence of coins [9, 1, 1, 1]. �e correct answer is OPT = 2 because
12 = 6 + 6.

(b) Consider the pseudocode below. Provide an upper bound in O notation that bounds the time it
takes a compute f [n] (it should be given in terms of n and k). Give a short high-level explanation
of your answer. For full points your upper bound should be tight (but you do not have to prove its
tightness).

Algorithm 2
1: Input: integers n, k. Array b = [1 = b1, b2, b3, . . . , bk].
2:
3: Let f [0 . . . n] be an array of integers.
4: f [0]← 0 . Terminating condition.
5: for N ← 1 . . . n do
6: f [N ]←∞ . At �rst, we need∞ coins. We try to improve upon that.
7: for i← 1 . . . k do
8: if b[i] ≤ N then
9: val← 1 + f [N − b[i]] . Use coin b[i], it remains to optimally pay N − b[i].

10: f [N ]← min(f [N ], val)

11: Print(f [n])

Solution:

In worst case, the algorithm completes in O(n · k) time. �ere are a total of n di�erent states
f [1], . . . , f [N ], and computing the answer for each state takes O(k) time (due to the inner for
loop). �erefore, the total runtime is O(n · k).

(c) Let OPT(N) be the answer (min. number of coins needed) when n = N . Algorithm 2 (correctly)
computes a function f [N ] that is equal to OPT(N). Formally prove why this is the case, i.e., why
f [N ] = OPT (N).

Hint: Use induction to prove the invariant f [n] = OPT (n). Assume the claim holds for all values of
n ∈ {1, 2, . . . , N − 1}. �en show the same holds for n = N .

3



Solution:

We use induction. For the base of the induction, f [0] = 0 = OPT (0) is trivially correct. Suppose
that f [n] = OPT (n) for all values of n ∈ {1, 2, . . . , N − 1}. It remains the prove the induction
step: that f [N ] is also correct.

Suppose that the optimal way to obtain N is via OPT (N) = T ∗ coins: N = a1 + a2 + . . .+ aT ∗

where ai ∈ {b1, . . . , bk} for all i. Let x be the index such that a1 = bx. �en, in the inner for
loop (lines 7–10), a�er the variable i becomes equal to x, we will have that f [N ] ≤ 1 + f [N − bx].
However, by assumption, we have that f [N − bx] = OPT (N − bx) is computed correctly, hence
OPT (N−bx) ≤ T ∗−1 since N = a1+a2+ . . .+aT ∗ can be rewri�en as N−bx = a2+ . . .+aT ∗

(this uses T ∗ − 1 coins). �erefore, f [N ] ≤ 1 +OPT (N − bx) ≤ 1 + T ∗ − 1 = T ∗ = OPT (N).

We shown f [N ] ≤ OPT (N). It remains to argue that f [N ] ≥ T ∗. Suppose the la�er is not the
case and consider the moment when f [N ] (i.e., its corresponding variable solution) got assigned
a value less than T ∗. At that moment, we have that 1 + f [N − bi] < T ∗. Rewriting, we have that
f [N − bi] < T ∗ − 1. �is means, by assumption and N − bi < N , that there exists a way to pay
N − bi using less than T ∗− 1 coins. However, this implies that we can then pay N using less than
T ∗ coins: simply pay for N − bi and then use an additional coin bi. �is contradicts the choice of
T ∗.

Hence, we proved that f [N ] = T ∗ = OPT (N). �e claim follows by induction.

(d) Rewrite Algorithm 2 to be recursive and use memoization. �e running time and correctness should
not be a�ected.

Solution:

Algorithm 3
1: Input: integers n, k. Array b = [1 = b1, b2, b3, . . . , bk].
2: Global variable: memo[1 . . . n], initialized to −1.
3:
4: function f (N )
5: if N = 0 then return 0

6: if memo[N ] 6= −1 then returnmemo[N ]

7: solution←∞
8: for i← 1 . . . k do
9: if b[i] ≤ N then

10: val← 1 + f(N − b[i]) . Use coin bi, it remains to optimally pay x− bi.
11: solution← min(solution, val) . Check if this is the best seen so far?
12: memo[N ]← solution
13: return solution

14:
15: Print(“OPT = “, f(n))

Exercise 6.3 Longest common subsequence.

Given are two arrays, A of length n, and B of length m, we want to �nd the their longest common
subsequence and its length. �e subsequence does not have to be contiguous. For example, if A =

4



[1, 8, 5, 2, 3, 4] and B = [8, 2, 5, 1, 9, 3], a longest common subsequence is 8, 5, 3 and its length is 3.
Notice that 8, 2, 3 is another longest common subsequence.

Given are the two arrays:
A = [7, 6, 3, 2, 8, 4, 5, 1]

and
B = [3, 9, 10, 8, 7, 1, 2, 6, 4, 5],

Use the dynamic programming algorithm from Section 3.3 of the script to �nd the length of a longest
common subsequence and the subsequence itself. Show all necessary tables and information you used
to obtain the solution.

Solution:

As described in the lecture, DP [i, j] denotes the size of the longest common subsequence between the
strings A[1 . . . i] and B[1 . . . j]. Note that we assume that A has indices between 1 and 8, so A[1 . . . 0]
is empty, and similarly for B. �en we get the following DP-table:

0 1 2 3 4 5 6 7 8 9 10

0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 1 1 1 1 1 1

2 0 0 0 0 0 1 1 1 2 2 2

3 0 1 1 1 1 1 1 1 2 2 2

4 0 1 1 1 1 1 1 2 2 2 2

5 0 1 1 1 2 2 2 2 2 2 2

6 0 1 1 1 2 2 2 2 2 3 3

7 0 1 1 1 2 2 2 2 2 3 4

8 0 1 1 1 2 2 3 3 3 3 4

To �nd some longest common subsequence, we create an array S of length DP [n,m] and then we start
moving from cell (n,m) of the DP table in the following way:

If we are in cell (i, j) and DP [i− 1, j] = DP [i, j], we move to DP [i− 1, j].

Otherwise, if DP [i, j − 1] = DP [i, j], we move to DP [i, j − 1].

Otherwise, by de�nition of DP table, DP [i− 1, j − 1] = DP [i, j]− 1 and A[i] = B[j], so we assign
S[DP [i, j]]← A[i] and then we move to DP [i− 1, j − 1].

We stop when i = 0 or j = 0.

Using this procedure we �nd the following longest common subsequence: S = [7, 6, 4, 5].

Exercise 6.4 Coin Collection (2 points).

Suppose you are playing a video game where your character’s goal is to collect as many coins in a
two-dimensional m × n grid world (m rows by n columns). �e world is given to you as a table
A[1 . . .m][1 . . . n] where each cell is either a coin (denoted as “C”), impassible (denoted as “#”), or
passable without coins (denoted as “.”).

5



Your character starts at (1, 1) (this cell will always be passable) and, in each turn, can move either
right or down (up to your choice), or stop whenever (ending the game). Moving right corresponds to
moving from (x, y)→ (x, y+1) and moving down is (x, y)→ (x+1, y). �e goal is to determine the
maximum number of coins the player can collect (by moving into a cell).

For example, on the m× n = 5× 6 grid depicted
right, the player can collect 5 coins by following
the solid-red path. �is is maximum possible and
the answer is 5. A suboptimal path is depicted in
dashed-blue, yielding 4 coins.

1

2

3

4

5

1 2 3 4 5 6

. C C . C .

. # C C C #

C . . . # #
. C # # . .

. C . . C .

Remark: Be careful not to peek into an element of the table that is out-of-bounds (i.e., not within [1,m]×
[1, n]), as this can cause unde�ned behavior on a real computer.

(a) Write the pseudocode of a recursive function f(x, y) which takes as argument a position of the
character (x, y), and outputs the maximum number of coins that the character can collect if it
started at (x, y) (ignoring all coins it might have previously collected). For example, in the grid
above, f(1, 1) = 5, f(2, 1) = 4, f(5, 5) = 1, f(5, 6) = 0. �e function does not need to be
memoized for this subtask.

Solution:

Algorithm 4
1: Input: integers m,n, grid A (seen as global read-only variables).
2:
3: function f (x, y)
4: coinHere← 1 if A[x][y] = ”C” and 0 otherwise
5: ret← coinHere
6: if x+ 1 ≤ m and A[x+ 1][y] 6= ”#” then
7: goDown← coinHere+ f(x+ 1, y)
8: ret← max(ret, goDown)

9: if y + 1 ≤ n and A[x][y + 1] 6= ”#” then
10: goRight← coinHere+ f(x, y + 1)
11: ret← max(ret, goRight)

12: return ret

(b) Prove that your algorithm terminates in �nite time (even if possibly exponential in the size of the
input). Prove that the algorithm is correct.

Hint: (�is hint is assuming you implemented part (a) in the most natural recursive way.) To prove the
algorithm completes in �nite time, observe that x+ y only increases and is bounded, hence no in�nite
execution paths exist.

Hint: To prove the algorithm is correct, we simply need to prove the invariant which describes f(x, y)
(i.e., the �rst sentence of part (a)). Assume, by induction, the invariant holds for recursive calls f(x, y)
with strictly larger values of x + y, i.e., for those f(x′, y′) such that x′ + y′ > x + y. Argue that

6



then it also holds for f(x, y) — we do this by considering the optimal path P ∗ that starts at (x, y) and
consider three cases: if P ∗ ends immediately, if P ∗ initially goes to the right, or it goes down. Using
the inductive hypothesis, argue that in each of those cases f(x, y) becomes a value at least as large
as the number of coins collected on P ∗. Similarly, by considering the three cases, argue that the �nal
value cannot be larger than that of P ∗ since otherwise we could �nd a be�er P ∗. �is, by induction,
establishes that f(x, y) is always equal to the number of coins on P ∗.

Solution:

Finite time. Clearly, the parameters (x, y) of the function f satisfy x ∈ {1, 2, . . . ,m} and y ∈
{1, 2, . . . , n} since this condition is true when the function is �rst called and the function ensures
it remains true upon subsequent calls. Furthermore, in each subsequent call of f , the value of x+y
(the sum of values of parameters) strictly increases; since x + y is also bounded within the range
[2,m+ n] we conclude that f will eventually terminate.

Correctness. In short: we check all possible paths. Using induction, we prove the invariant that
f(x, y) reports the largest number coins we can collect by starting at (x, y). Induction hypothesis:
the invariant holds for calls f(x, y) with strictly larger value of x + y. Induction step: let P ∗ be
the optimal path starting at (x, y). If P ∗ stops immediately, clearly f(x, y) is going to (correctly)
return 0/1 based on whether there is a coin on (x, y), hence f(x, y) will return the correct value.
From now on, let us de�ne with val(P ∗) the number of coins on P ∗.

If P ∗ initially goes to the right, let P ′ be a su�x of P ∗ without the �rst cell (i.e., starting at (x, y+
1)) and let coinHere be 1 if there is a coin at (x, y) and 0 otherwise. By construction, we have
val(P ∗) = coinHere+ val(P ′). �en, consider the call goRight = coinHere+ f(x, y + 1): by
induction, f(x, y + 1) reports a value at least as large as val(P ′), hence

f(x, y) ≥ goRight = coinHere+ f(x, y + 1) ≥ coinHere+ val(P ′) = val(P ∗).

Analogously, the same claim holds if P ∗ initially goes down.

We have proven f(x, y) ≥ val(P ∗). We now prove f(x, y) cannot exceed val(P ∗). For the sake
of contradiction, suppose f(x, y) > val(P ∗). �ere are 3 cases: (1) if the �nal value of f(x, y) was
assigned in line 5 (of Algorithm 4). �is is impossible, as then f(x, y) = coinHere ≤ val(P ∗),
a contradiction. Case (2): if the �nal value of f(x, y) was assigned in line 11 (i.e., by going right),
i.e., f(x, y) = coinHere + f(x, y + 1). �en, let P ′ be the optimal path starting at (x, y + 1).
By the induction hypothesis, we have that f(x, y + 1) = val(P ′). But then, we can construct a
path starting at (x, y) that is be�er than P ∗: simply prepend (x, y) to P ′ which gives a value of
coinHere + val(P ′) = f(x, y) > val(P ∗). However, this contradicts the choice of P ∗, resulting
in a contradiction. Finally, case (3), when the �nal value of f(x, y) was assigned in line 8 (i.e., going
down), is completely analogous to case (2) and we are done. Hence, f(x, y) cannot contain more
coins than the optimal path P ∗. Hence, we proven the claim.

(c) Rewrite the pseudocode of the subtask (a), but apply memoization to the above f . Prove that calling
f(1, 1) will, in the worst-case, complete in O(m · n) time.

Solution:

7



Algorithm 5 Di�erences with Algorithm 4 are marked in blue for convenience.
1: Input: integers m,n, grid A (seen as global read-only variables).
2: Global variable: memo[1 . . .m][1 . . . n], initialized to −1.
3:
4: function f (x, y)
5: if memo[x][y] 6= −1 then returnmemo[x][y]

6: coinHere← 1 if A[x][y] = ”C” and 0 otherwise
7: ret← coinHere
8: if x+ 1 ≤ m and A[x+ 1][y] 6= ”#” then
9: goDown← coinHere+ f(x+ 1, y)

10: ret← max(ret, goDown)

11: if y + 1 ≤ n and A[x][y + 1] 6= ”#” then
12: goRight← coinHere+ f(x, y + 1)
13: ret← max(ret, goRight)

14: memo[x][y]← ret
15: return ret

Any two calls to f when the arguments (x, y) have the same value (i.e., on two calls f(x1, y1) and
f(x2, y2) where x1 = x2 and y1 = y2), at most one call can proceed beyond the �rst if statement —
the second call will short-circuit due to memoization and exit immediately. �erefore, the number
of times the function f proceeds beyond the �rst “memoization” if is O(m ·n). In each such call, the
number of operations excluding recursive calls is O(1), hence we conclude that the total runtime
is O(m · n).

(d) Write the pseudocode for an algorithm that computes the solution in O(m · n) time, but does not
use any recursion. Address the following aspects of your solution:

(a) De�nition of the DP table: What are the dimensions of the table DP ? What is the meaning
of each entry?

(b) Computation of an entry: How can an entry be computed from the values of other entries?

(c) Specify the base cases, i.e., the entries that do not depend on others.

(d) Calculation order: In which order can entries be computed so that values needed for each
entry have been determined in previous steps?

(e) Extracting the solution: How can the �nal solution be extracted once the table has been �lled?

(f) Running time: What is the running time of your solution?

(g) Explicitly write out the pseudocode.

Solution:

(a) DP [1 . . .m][1 . . . n]. �e entry DP [x][y] corresponds to the maximum number of coins that
the character can collect if it started at (x, y) (ignoring all coins it might have previously
collected)

(b) Each entry DP [x][y] is equal to the maximum of three things: (1) whether there is a coin at
(x, y) (0 if not, 1 if yes; this corresponds to the path stopping here), (2) whether there is a coin
at (x, y) plus DP[x+1][y] (corresponds to continuing the path down), (3) whether there is a
coin at (x, y) plus DP[x][y+1] (corresponds to continuing the path right).

8



(c) �e base case is essentially case (1) from part (b) above: if the path stops at (x, y) we initialize
DP [x][y] with 0 if there is no coin at (x, y) and 1 if there is one.

(d) One way to compute the entries is bo�om-to-top: from last to �rst row in the outer loop, then
from last to �rst column in the inner loop.

(e) DP [1][1] contains the �nal solution.

(f) Running time isO(m·n) since there areO(m·n) table entries, and each entry can be computed
in O(1) time.

(g) (see below)

Algorithm 6
1: Input: integers m,n, grid A (seen as global read-only variables).
2:
3: De�ne a table dp[1 . . .m][1 . . . n].
4: for x← m downto 1 do
5: for y ← n downto 1 do
6: coinHere← 1 if A[x][y] = ”C” and 0 otherwise
7: dp[x][y]← coinHere
8: if x+ 1 ≤ m and A[x+ 1][y] 6= ”#” then
9: goDown← coinHere+ dp[x+ 1][y]

10: dp[x][y]← max(dp[x][y], goDown)

11: if y + 1 ≤ n and A[x][y + 1] 6= ”#” then
12: goRight← coinHere+ dp[x][y + 1]
13: dp[x][y]← max(dp[x][y], goRight)

14: Print(dp[1][1])

9


